

# Welcome to the PMG Educational Program

#### Sponsored by:







# An Overview on ACCA's Residential HVAC System Design Process

### John D. Sedine

Engineered Heating & Cooling, Inc. Cedar Springs, MI



## Presentation Overview: ACCA Manual J, Manual S, Manual D



1. Provide a <u>fundamental</u> understanding on the <u>basics</u> of what it takes to do an accurate residential mechanical system design:



- 2. Provide verification points and caveats
  - <u>Code officials</u>: For the purpose of issuing a permit
  - <u>Quality control personnel</u>: Checking consistency/accuracy
- 3. Highlight relevant ACCA resources and opportunities



**Disclaimer:** This is NOT a design course!



To design a mechanical system that can add (heating) or remove (cooling) heat energy at a rate (BTUs per hour) that will allow the home's indoor environment to achieve the design conditions.

This will keep occupants comfortable and safe and provide for energy-efficient operation.



#### **System Design Process** ACCA ACCA Residential Commercial Manuals Manuals System Concept CS RS Ν **Load Calculation** J System Zoning Zr Air Т Q **Distribution** Equipment Selection S CS **Duct Size** D Q Calculation Adjust, Test, Balance В В

# Part 1 – Load Calculation







# ACCA/ANSI 2 Manual J - 2016



- Standard required in:
  - 2015 IRC §M1401.3, and
  - 2015 IECC §R403.7
- Comprised of two sections
  - Normative: 9 pages of text and 200 pages of tabular information that are the <u>enforceable</u> requirements
  - Informative: 390 pages of in depth discussion, documentation, and examples



Latest ANSI approval in Feb 2016



### Load Calcs: Heat Gain / Heat Loss



#### Summer

- Heat flows INTO the home
  - Sensible heat dry heat (dry bulb; thermometer)
  - Latent heat wet heat (wet bulb; humidity)

Heat Gain ... so we need cooling



#### Winter

- Heat flows OUT of the home
  - Sensible heat only

# Heat Loss ... so we need heating

Heat flow is a rate; the units are Btu/h. (Analogous to mph).

## Manual J Load Design Conditions



# Two design conditions ... hence, two sets of peak loads.

|                    | Outdoor Design Temp<br>(Geographic-specific) | Indoor Design Temp |
|--------------------|----------------------------------------------|--------------------|
| Heat Gain (summer) | 1% db condition                              | 75 F               |
| Heat Loss (winter) | 99% db condition                             | 70 F               |





# Loads That Must Be Accounted For (as applicable to the <u>specific home</u>)



- Fenestration (windows, glass doors, skylights)
- **Opaque panels** (wood/metal doors, above & below grade walls, partition walls, ceilings, floors)
- Infiltration
- Ventilation
- Internal (number of people and appliances)
- System (ducts and blower)



# **Basic Load Equation**



### $Load = U \times A \times \Delta T$

- **U** = the heat transfer performance index (how well a material transfers heat; it's the reciprocal of R-value)
- **A** = the Area of the surface (window, wall, ceiling, etc.)
- $\Delta T$  = the temperature difference across the surface

### Load units are Btu/h



# **Designer Software Options**



### Simple load calculation – MJ8<sub>AE</sub> (Abridged Edition)

- Dwelling must be 100% compatible with AE Checklist
- Can be done by hand or using ACCA MJ8 speedsheet

### **Full load calculation – Full MJ8**

- Can be done by hand, but extremely time consuming
- Usually use third party software<sup>1</sup>

<sup>1</sup> ACCA vets third party software for compliance with MJ8 procedures, those that pass received "Powered by Manual J" recognition (see: <u>http://www.acca.org/standards/approved-software</u>)



# Manual J, Form J1<sub>ae</sub> (Block Load)

**RICHM** 



| LOAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WORKSHEET: MANU<br>D CALCULATIONS FOR RESIDENTIAL       | IAL J8AE<br>LAIR CONDITIONING                      |                   | 0711 1             |                                            |                                        |                                    | -                       | Á                                  | 400             |                                                                                                         |                                                                |                                                      |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|-------------------|--------------------|--------------------------------------------|----------------------------------------|------------------------------------|-------------------------|------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|------------------------------|
| and the second se | To be used with ACCA's Man                              | ual J8AE                                           | ANUALI            | , OIN EI           |                                            | 1) Room<br>L. H & W In c<br>gross 5    | lecimal feet and<br>sqFt areas     | Block Loa<br>Length     | d / Room Sur<br>Height<br>or Width | Gross           |                                                                                                         |                                                                |                                                      |                              |
| For Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |                                                    |                   | Lotitude<br>99% db | DR<br>HTD                                  | 2) Exposed<br>3) Partition             | Wall                               |                         |                                    |                 |                                                                                                         |                                                                |                                                      |                              |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                    |                   | 1% db<br>Grains    | CTD<br>ACF                                 | 4) Floor<br>5) Ceiling                 |                                    | Slope >                 |                                    |                 |                                                                                                         |                                                                |                                                      |                              |
| City/State/Provin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                         |                                                    |                   |                    | Construction Number<br>Direction & Details | Heating<br>HTM                         | Cooling<br>HTM                     | Net<br>Area             | Bluh<br>Heating                    | Bouh<br>Cooling | IN UNCONDITIONED SE                                                                                     | ACE                                                            |                                                      |                              |
| By Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |                                                    | -                 | a<br>h             |                                            |                                        |                                    |                         |                                    |                 | Heating                                                                                                 | Cooling Table 1                                                | 225.0                                                | 1%                           |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                    |                   | 6                  |                                            | _                                      |                                    |                         |                                    |                 | tor Area (5qF0 >                                                                                        | volues Volues                                                  |                                                      | -                            |
| Gillionani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ···                                                     |                                                    |                   | 0<br>4             |                                            |                                        |                                    |                         |                                    |                 | slue).                                                                                                  |                                                                |                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Equipment Summary                                       | v                                                  |                   | 1                  |                                            |                                        |                                    |                         |                                    |                 | ie 7 (nyobal interpolation is asceptable)<br>rustion                                                    |                                                                | Improved                                             | Centruction                  |
| 14.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Equipment ourman)                                       | ine .                                              | F                 | h                  |                                            |                                        |                                    |                         |                                    |                 | Elemencase factors from table<br>Seet loss factor =                                                     | R-Value                                                        | _                                                    | Heat los                     |
| Make                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heating Output (Blub)                                   | Efficiency                                         |                   | i                  |                                            | _                                      |                                    | -                       |                                    |                 | ible gain factor =<br>ent gain (Bult) =                                                                 | Leakage                                                        |                                                      | Sensible gain<br>Latent gain |
| Sensible Cooling (Btu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (h) Latent Cooling (Bluh)                               | Total (Bluh)                                       |                   | <u>к</u><br>1      |                                            |                                        |                                    |                         |                                    |                 | For heat loss =                                                                                         |                                                                |                                                      | For N                        |
| COP/EER/SEER/HSP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PF Cooling CFM                                          | Heating CIFM                                       | -                 | a<br>b             |                                            | -                                      |                                    |                         |                                    |                 | T r sensible gain =                                                                                     | < Lite Tree                                                    | or x line 4 adjustment >                             | For sensit                   |
| Snare Thermostat (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) Heat() Heat/Cool()                                    | Night Setback ( )                                  |                   | c d                |                                            | _                                      |                                    |                         |                                    |                 | O tole gain factor +                                                                                    | < Lire 2 faci                                                  | or x line 5 adjustment. >                            |                              |
| opuse memosian (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,, ,                                                    |                                                    |                   | 8 -                |                                            |                                        |                                    |                         |                                    |                 | For heat loss -                                                                                         |                                                                |                                                      | For N                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Construction Data                                       |                                                    |                   | c                  |                                            |                                        |                                    |                         |                                    |                 | S For latent gain =                                                                                     | < Line & Serve                                                 | r line fi adi atmenti i b                            | For late                     |
| Windows                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Floer                                                   |                                                    |                   | d                  |                                            |                                        |                                    |                         |                                    |                 | tie gain factor =                                                                                       | < Line 7 fect                                                  | or x fine 9 actus tment >                            |                              |
| WEIGON3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                    |                   | b                  |                                            | _                                      |                                    |                         |                                    |                 | T = ro adjustment = 1.0)                                                                                | < LUB 2 100                                                    | a new to associate a                                 |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    |                   | d                  |                                            |                                        |                                    |                         |                                    |                 | Ny area (Coff =                                                                                         |                                                                | Defau                                                | it supply area               |
| Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Partitions                                              |                                                    |                   | o<br>f             |                                            |                                        |                                    |                         |                                    |                 | m area (SoFt) =                                                                                         |                                                                | Hs = matato<br>Installe                              | ed return area               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | states a                                           |                   | g<br>b             |                                            |                                        |                                    |                         |                                    |                 | S 1/ default ava 1                                                                                      |                                                                | R: = Installer                                       | d area / defaul              |
| Walls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Basement                                                | Wals                                               |                   | a                  |                                            |                                        |                                    |                         |                                    |                 | E restrie coolingi =                                                                                    | < Ka (L20) × Ra (                                              | L93) = Kr (L20) x Rr (L19)                           | 1>                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Convert Siz                                             | <b>*</b> b                                         |                   | a                  |                                            |                                        |                                    | -                       |                                    |                 | E Ment cooling) =                                                                                       | < Later                                                        | LGA = Rr(L19) >                                      |                              |
| Hoot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ground Se                                               |                                                    |                   | e b                |                                            |                                        |                                    | -                       |                                    |                 | Q ket loss factor =                                                                                     | < Line 11 Fact<br>< Line 12 Fact                               | or x Line 21 SAA value ><br>or x Line 21 SAA value > | į                            |
| Central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |                                                    |                   | d                  |                                            |                                        |                                    |                         |                                    |                 | E we daw (garvi =                                                                                       | < Line 13 gain x                                               | Line 22 LGA adjustment                               | *                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    |                   |                    |                                            | -                                      |                                    |                         |                                    |                 | RKS                                                                                                     |                                                                |                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Instructions                                            |                                                    |                   | 0                  |                                            |                                        |                                    |                         |                                    |                 |                                                                                                         |                                                                |                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Instructions                                            | 6 7 and 9) to complete Form (14F (on page 2)       | _                 | e d                |                                            |                                        |                                    | -                       |                                    |                 | 1 J VENTILATION                                                                                         |                                                                |                                                      |                              |
| For BOOM BY BOOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Form JTAE (name 2) mates at the arrows with page 4 (F   | Room Calculation Worksheet). The individual room   | an for MAR        | a En               | velope Leakage                             | infit Cfm t                            | or Heating                         |                         |                                    |                 | volume (QuPt) >                                                                                         | CTH grics                                                      | СТР                                                  | T5 Gu                        |
| LOADS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | loads are "tallied" into Block Load/Room Summation col  | (umn (page 2).                                     |                   | a Nu               | mber of bedrooms                           | 1                                      | Occupants >                        | -                       |                                    |                 |                                                                                                         |                                                                |                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Use supporting data from Worksheets A- H (on pages 3    | 3, 6, 7, and 8) to complete Form 31AE (on page 2). | 131               | D [AD              | planoes (1200 Biun or 2400 Biut)           |                                        |                                    |                         |                                    |                 | 16e *                                                                                                   | ar Chr<br>put dato, abrive                                     | n required by local code =                           | · L                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Note: Worksheet F is not part of the Abridged Edition n | nethodology and is not included in Form J1AE.      | ssimum ventilatio | o Cim for MJ       | lao is 50                                  | Factors >                              | o for this ich >                   | -                       |                                    |                 | e = = = = = = = = = = = = = = = = = = =                                                                 | (ine 1) x volume (ine 2) / 60<br>st Clinivate from line 1 or 3 | _                                                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    | anufacturer's per | formance data      | has blower heat discount (1,707 if no      | 0 if yes)                              | the states in                      |                         |                                    |                 | bn of infitiation Cfm and engineered ve <u>ntiation S</u><br>entitation (vening)                        | in http://www.                                                 |                                                      | 1                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    | lines 14 through  | 203                | A) Latent                                  | nfitration Gain (B                     | auto)                              |                         |                                    |                 | si Cim value from lines 8.6.9 Worksheet E)<br>< If line 5 = yes; Cim = line 4 -                         | Ine 7 or If line 6 = yes                                       | (Cfin = lino 4 value)                                |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    |                   |                    | B) Latent<br>C) Latent                     | or Occupants (Or<br>or Plants (Small = | e occupent = 20<br>10, Med = 20, L | 00 Btuh)<br>Large = 30) |                                    |                 | (6) -                                                                                                   |                                                                |                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    |                   |                    | D) Latent 1                                | or Duct in Uncom                       | titioned Space                     |                         |                                    |                 | e 4 T<br>Initiation. The system designer may chose to use                                               | a J1ae See Sector 3-13<br>a larger value.                      | , Manoa' MJ868                                       |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    |                   |                    | F) Total La                                | tent Gain (Btuh)                       |                                    |                         |                                    |                 | must J If the design Clim value coccects S0 Chr.<br>must J If the design features freat recovery eoxign | west.                                                          |                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    |                   |                    |                                            |                                        |                                    |                         |                                    |                 | To Jiaa N                                                                                               | CF x Line 10 Chri x HTD                                        |                                                      |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         |                                                    |                   |                    |                                            |                                        |                                    | 13 Carel                | (de ceties (Bhubi)                 |                 | To J144 2                                                                                               | CF x Line 10 Chr x CTD                                         |                                                      |                              |

## Load Calculation Min. Verification Points



- Location (City, State)
- Outdoor design temperatures and grains (Why deviating from MJ8 Tables 1A or 1B?)
- Indoor design temperatures (75°F db cooling, 70°F db heating unless superseded by code/regulation)
- Orientation matches actual home or plan
- Occupants = number of bedrooms + 1
- Conditioned floor area = home or plan
- Eave overhang depth and internal shading = home or plan / default
- Number of **skylights** = home or plan
- Sensible + latent heat gain = total heat gain



# What to Watch Out For ...



# Some practitioners will try to fudge the numbers to get bigger loads:

- Change the design temperatures (outdoor and/or indoor)
- Design to the worst case scenario (e.g., very loose house)
- Add more occupants than 'number of bedrooms plus 1'
- Calculate duct loads even when ducts in conditioned space
- Not include window overhangs and shading
- Puff up internal loads
- Use a factor of safety

The above practices are not supported by ACCA. Manual J instructs practitioners to be thorough and reflect the ACTUAL conditions.



# Part 2 - Equipment Selection





Air Conditioners | Heat Pump | Mini Splits | Condenser | Geothermal | Boller | Furnace



# ANSI/ACCA 3 Manual S - 2014



- Standard required in:
  - 2015 IRC §M1401.3, and
  - 2015 IECC §R403.7
- Comprised of two sections:
  - Normative: 22 pages of <u>enforceable</u> requirements
  - Informative: 270 pages of in-depth discussion, documentation, and examples



Latest ANSI approval in May 2014



## **Overview Equipment Selection Steps**



### 1. Start with sizing values

- MJ8 heating load: For furnaces and boilers
- MJ8 cooling load: For cooling-only and heat pump units

### 2. Manual S provides sizing rules

- Sets upper and lower limits for equipment total capacity
- **3. Designer must use OEM performance data** 
  - Capacity values must be for operating conditions



## Size Limits For Each Equipment Type

RIC

INTERNATI



| Size                               | Limits for Cool                                                                            | ing-Only Equi                                                                               | pment                                                         |                                                                          |                                          |                                                              |                                                              |
|------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Equipment<br>Type                  | Single<br>Speed                                                                            | Two<br>Speed                                                                                | Variable<br>Speed<br>See Note 8                               | _                                                                        |                                          |                                                              |                                                              |
|                                    | Ducted or Du                                                                               | ctless Total Coo                                                                            | ling Capacity                                                 | S                                                                        | Size Limits for Fossil Fuel Furnaces     |                                                              | aces                                                         |
| Air-Air                            | Max = 1.15<br>Min = 0.90                                                                   | Max = 1.20<br>Min = 0.90                                                                    | Max = 1.30<br>Min = 0.90                                      | Output<br>Capacity                                                       | Single<br>Stage                          | Multi<br>Stage                                               | Modulate<br>Burner                                           |
| Wator-Air                          | Mar. 4.45                                                                                  | FS                                                                                          | RS                                                            | for Heating-<br>Only                                                     | Sizing value to 1.4 x sizing             | Sizing value to 1.4 x sizing                                 | Sizing value to 1.4 x sizing                                 |
| pipe loop<br>system                | Max = 1.15<br>Min = 0.90                                                                   | Max = 1.20<br>Min = 0.90<br>FS                                                              | Max = 1.30<br>Min = 0.90<br>BS                                |                                                                          | value                                    | value at full capacity                                       | value at full capacity                                       |
| Water-Air<br>open-piping<br>system | Max = 1.25<br>Min = 0.90                                                                   | Max = 1.30<br>Min = 0.90<br>FS                                                              | Max = 1.35<br>Min = 0.90<br>RS                                | Preferred <sup>3</sup><br>Output<br>Capacity for<br>Heating and          | Sizing value to<br>1.4 x sizing<br>value | Sizing value to<br>1.4 x sizing<br>value at full<br>capacity | Sizing value to<br>1.4 x sizing<br>value at full<br>capacity |
| Zone<br>Damper<br>Systems          | To minimize exo<br>systems shall he<br>capacity as pos<br>compared to the<br>space served. | cess air issues, zo<br>ave as little exces<br>sible when full-co<br>e <b>Manual J</b> block | one damper<br>is cooling<br>oling capacity is<br>load for the | Cooling<br>Maximum <sup>4</sup><br>Output<br>Capacity for<br>Heating and | Sizing value to<br>2.0 x sizing<br>value | Sizing value to<br>2.0 x sizing<br>value at full<br>capacity | Sizing value to<br>2.0 x sizing<br>value at full<br>capacity |
|                                    |                                                                                            |                                                                                             |                                                               | Zone<br>Damper<br>Systems                                                | Zone damper sy capacity as poss          | stems should have<br>block load for the                      | e as little excess<br>acity is compared                      |

## Heat Pump Sizing Limits



| Siz                                                  | <b>e Limits fo</b><br>JSHR < 0 | r Condition<br>.95; or HDD /   | <b>A Heat Pun</b><br>CDD < 2.0 | nps             |                                                                                                  |                             |                             |                                   |                                   |  |
|------------------------------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------|--------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------------|-----------------------------------|--|
| Equipment<br>Type                                    | Single<br>Speed                | Two<br>Speed                   | Vari<br>Spe                    | able<br>eed     |                                                                                                  |                             |                             |                                   |                                   |  |
|                                                      | Ducted or                      | Ductless                       | Ducted                         | Due             | ctless                                                                                           |                             |                             |                                   |                                   |  |
| Air-Air                                              | Max = 1.15<br>Min = 0.90       | Max = 1.20<br>Min = 0.90<br>FS | Max = 1.20<br>Min = 0.90<br>RS | Max<br>Min      | x = 1.30<br>= 0.90<br>RS                                                                         |                             |                             |                                   |                                   |  |
| Water-Air<br>pipe loop<br>system                     | Max = 1.15<br>Min = 0.90       | Max = 1.20<br>Min = 0.90<br>FS | Max = 1.20<br>Min = 0.90<br>RS |                 | Size Limits for Condition B Heat Pumps<br>JSHR = 0.95 or greater; and HDD / CDD = 2.0 or greater |                             |                             |                                   |                                   |  |
| Water-Air<br>open pipe<br>system                     | Max = 1.25<br>Min = 0.90       | Max = 1.25<br>Min = 0.90       | Max = 1.25<br>Min = 0.90       |                 | Equip<br>Type                                                                                    | ment                        | Single<br>Speed             | Two<br>Speed                      | Variable<br>Speed                 |  |
| FS RS                                                |                                |                                |                                |                 | Air-Ai<br>Ducte<br>Ductle                                                                        | r<br>ed or<br>ess           | Max = +15,000<br>Min = 0.90 | Max = +15,000<br>Min = 0.90<br>FS | Max = +15,000<br>Min = 0.90<br>RS |  |
| Designer must heed the Wate<br>notes for the tables. |                                |                                |                                | Water<br>pipe I | <sup>-</sup> -Air<br>oop                                                                         | Max = +15,000<br>Min = 0.90 | Max = +15,000<br>Min = 0.90 | Max = +15,000<br>Min = 0.90       |                                   |  |



| Air-Air<br>Ducted or<br>Ductless | Max = +15,000<br>Min = 0.90 | Max = +15,000<br>Min = 0.90<br>FS | Max = +15,000<br>Min = 0.90<br>RS |
|----------------------------------|-----------------------------|-----------------------------------|-----------------------------------|
| Water-Air<br>pipe loop<br>system | Max = +15,000<br>Min = 0.90 | Max = +15,000<br>Min = 0.90<br>FS | Max = +15,000<br>Min = 0.90<br>RS |
| Water-Air<br>open pipe<br>system | Max = +15,000<br>Min = 0.90 | Max = +15,000<br>Min = 0.90<br>FS | Max = +15,000<br>Min = 0.90<br>RS |





A piece of equipment's AHRI rating is evaluated for air at: 80°F db / 67°F wb entering the indoor unit, and 95°F db entering the outdoor unit.

A standardized testing point for equipment capacity and efficiency, but <u>inappropriate</u> for use in equipment sizing and selection.

No one wants an 80°F indoor environment in the summer! And not every location will have a 95°F outdoor design temperature.



## Equipment Sizing / Selection Min. Verification Points



|                                         | Cooling Equipment                                                                  | Heating Equipment                                                      |
|-----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Equipment<br>Information                | <ul><li>Type</li><li>Model</li></ul>                                               | <ul><li>Type</li><li>Model</li></ul>                                   |
| Capacities satisfy<br>design conditions | <ul><li>Sensible Capacity</li><li>Latent Capacity</li><li>Total Capacity</li></ul> | <ul><li>Total Output Capacity</li><li>Auxiliary Heating Cap.</li></ul> |
| Within load<br>sizing limits            | • To be verified                                                                   | • To be verified                                                       |
| Blower Info<br>(at design conditions)   | <ul><li>CFM</li><li>ESP</li></ul>                                                  | <ul><li>CFM</li><li>ESP</li></ul>                                      |



### What to Watch Out For ...



### Some designers will:

- Seek (incorrectly) to use AHRI rated capacities instead of OEM engineering performance data
- Not interpolating the OEM performance data for the capacity <u>at design conditions</u>
- Misread / misapply OEM performance data tables (can be very confusing, and will come in different configurations)
- Round up to next size
- Push for equipment outside of the sizing limits



# Part 3 – Duct System Design





Systems and Applications | Blowers and Air-side Devices | Sizing Calculators | Efficiency, Leakage and Nois



# ANSI/ACCA 1 Manual D - 2016



- Standard required in:
  - 2015 IRC §M1601.1 and §M1602.2
  - 2015 IMC §603.2
- Comprised of two sections
  - Normative: 43 pages of <u>enforceable</u> requirements
  - Informative: 213 pages of in-depth discussion, documentation, and examples



• Latest ANSI Approval in Oct 2016



#### Friction Rate Worksheet

|    | Step 1) Manufacturer's Blower Data<br>External static pressure (ESP) =                                                                                                                                                                                                                                       |     | Cfm = |     |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-----|
|    | Step 2) Component Pressure Losses (CPL)                                                                                                                                                                                                                                                                      |     |       |     |
| te | Direct expansion refrigerant coil<br>Electric resistance heating coil<br>Hot water coil<br>Heat exchanger<br>Low efficiency filter<br>High or mid-efficiency filter<br>Electronic filter<br>Other items that impede airflow<br>Supply outlet<br>Return grille<br>Balancing damper<br>Zone damper (full open) |     |       |     |
|    | Total component losses (CPL)                                                                                                                                                                                                                                                                                 |     | _ IWC |     |
|    | Step 3) Available Static Pressure (ASP)<br>ASP = (ESP - CPL) = (                                                                                                                                                                                                                                             | ) = |       | IWC |

#### Step 4) Total Effective Length (TEL)

Supply-side TEL + Return-side TEL = ( \_\_\_\_\_ + \_\_\_\_ ) = \_\_\_\_\_ Feet

#### Step 5) Friction Rate Design Value (FR)

FR value from friction rate chart = \_\_\_\_\_ IWC/100 Ft



## Friction Rate Worksheet



| Step 1) Manufacturer's Blower Data                                                                                                                                                                                                                                                                           |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| External static pressure (ESP) = <mark>0.67 IW</mark>                                                                                                                                                                                                                                                        | /C Cfm = 1,000                       |
| Step 2) Component Pressure Losses (CPL)                                                                                                                                                                                                                                                                      |                                      |
| Direct expansion refrigerant coil<br>Electric resistance heating coil<br>Hot water coil<br>Heat exchanger<br>Low efficiency filter<br>High or mid-efficiency filter<br>Electronic filter<br>Other items that impede airflow<br>Supply outlet<br>Return grille<br>Balancing damper<br>Zone damper (full open) | 0.25<br>0.10<br>0.03<br>0.03<br>0.03 |
| Total component losses (CPL)                                                                                                                                                                                                                                                                                 | 0.44 IWC                             |
| Step 3) Available Static Pressure (ASP)                                                                                                                                                                                                                                                                      |                                      |
| ASP = (ESP - CPL) = (0.67 - 0.4)                                                                                                                                                                                                                                                                             | 4 ) = <mark>0.23</mark> IWC          |

#### Step 4) Total Effective Length (TEL)

Supply-Side TEL + Return-Side TEL = (255 + 120) = 375 Feet



#### Step 5) Friction Rate Design Value (FR) FR value from friction rate chart = 0.06 IWC/100 FtFriction Rate Chart FR= ASP x 100 500 TEL 0.06 450-Inadequate Fan Performance o Increase speed 0.08 400 o Change blower o Reduce TEL .23 \* 100 350-0.10 FR = -----300-375 0.12 岜 250<sup>-</sup> 0.14 200-0.18 *FR* = 0.061 150 *IWC / 100 Ft* Fan is too Powerful 100o Decrease speed o Increase TEL 50o High runout velocity 0+ 0.05 0.15 0.10 0.20 0.25 0.30 0.35 Available Static Pressure

# Friction Rate Chart





Outside of the "wedge" may lead to velocity problems





# $Room \, CFM = Blower \, CFM * \frac{MJ \, Room \, Load}{MJ \, Total \, Load \, (htg \, or \, clg)}$

- One value for cooling and one value for heating
- The designer must use the larger of the two cfm values for sizing the duct runs

Reminder: Loads are in Btu/hr



# Example

INTERNATIONAL CODE COUNC



- Air handler delivers 1000 Cfm at 0.23 IWC (net)
- Total heating load: 60,000 Btu/h
- Total cooling load: 48,000 Btu/h •

| Poom CEM - | Blower CFM x MJ Room Load  |
|------------|----------------------------|
| KOOM CPM = | MI Total Load (htg or cla) |

*MJ* Total Load (htg or clg)

|       | Blower Cfm = 1000                 |           |           |         |         |            |  |  |  |  |
|-------|-----------------------------------|-----------|-----------|---------|---------|------------|--|--|--|--|
|       | Total heating load = 60,000 Btu/h |           |           |         |         |            |  |  |  |  |
|       | Total cooling load = 48,000 Btu/h |           |           |         |         |            |  |  |  |  |
|       |                                   | C - Btu/h | H - Btu/h | C - Cfm | H - Cfm | Design Cfm |  |  |  |  |
|       | Room 1                            | 4800      | 5800      | 100     | 97      | 100        |  |  |  |  |
|       | Room 2                            | 19200     | 25200     | 400     | 420     | 420        |  |  |  |  |
| D     | Room 3                            | 24000     | 29000     | 500     | 483     | 500        |  |  |  |  |
| L 201 | 6                                 |           |           |         |         |            |  |  |  |  |

# FR & Cfm → Duct Size & Velocity



- Using a duct slide rule, the Cfm and calculated FR will:
  - Provide values for sizing the ducts
    - Round
    - Rectangular
  - Provide an associated velocity in feet per minute (fpm)





# Velocity Limit



- Compare the velocity (feet per minute, fpm) at the design cfm with the limits for turbulence / noise control
- If the velocity exceeds the limits, then use the cfm for the limit velocity – resulting in bigger diameter ducts

| Air Velocity for Noise Control Subject to Notes 1, 2 and 8 |         |          |            |      |                   |         |         |      |
|------------------------------------------------------------|---------|----------|------------|------|-------------------|---------|---------|------|
| Component                                                  |         | Supply S | ide (Fpm)  |      | Return Side (Fpm) |         |         |      |
|                                                            | Conse   | rvative  | Maxi       | mum  | Conse             | rvative | Maximum |      |
|                                                            | Rigid   | Flex     | Rigid      | Flex | Rigid             | Flex    | Rigid   | Flex |
| Trunk Ducts                                                | 700     | 700      | 900        | 900  | 600               | 600     | 700     | 700  |
| Branch Ducts                                               | 600     | 700      | 900        | 900  | 500               | 600     | 700     | 700  |
| Supply Outlet Face Velocity                                | Size fo | r Throw  | 700 Note 7 |      | _                 |         |         |      |
| Return Grille Face Velocity                                | _       |          | _          | _    | _                 |         | 500     |      |
| Filter Grille Face Velocity                                | _       | _        | _          | _    | _                 |         | 300     |      |

## Manual D Min. Verification Points



### **ACCA recommended minimum:**

- ESP from blower table at Design Airflow (CFM)
- Total Component Pressure Losses (CPL)
- Available static pressure (ASP = ESP CPL)
- Lengths: longest supply duct, longest return duct, TEL
- Determined Friction Rate
- Used Manual J room loads to determine Heating/Cooling CFMs
- Ensure maximum airflow velocity limits are not exceeded



# What to Watch Out For ...



- Designers that ALWAYS use a FR of 0.10
  - It needs to be calculated every time for the specific duct system details
- Check the math
  - ASP = ESP CPL
  - FR = (ASP x 100) / TEL
  - Spot check a few register CFMs
- Not using balancing hand dampers in the runout branches
- Not altering the design for a house plan that is rotated to the opposite street side





# Part 4: ACCA-Available Resources



#### A http://www.acca.org/standards/codes ♀ < ♥ ★ Building Codes - ACCA</p>

#### File Edit View Favorites Tools Help

#### 🙀 🖊 dashboards Customer Serv...

Get involved in ACCA's Codes Committee and make a difference in the development and adoption of good building codes. For more into about becoming involved in the Codes Committee and ACCA's building code efforts, contact <u>codes@ecca.org</u>.

#### Information for Code Officials

#### **Brochures for Code Officials**

ACCA has developed sevenal brochures which help code officials verify residential load calculations, duct design and equipment selection in accordance with Manuals J, L and J. While if so practical for code officials to verify every single aspect of these submissions, these brochures offer checklists for a simplified verification process. <u>Download them</u>.

#### Load Calculation Software

An important warning notice for code officials about the dangers of inappropriate load calculation software. Download IL

#### ICC PMG Membership Council

Visit the International Code Council's (ICC) Plumbing Mechanical Gas (PMG) Membership Council webpage for other resources like CodeNotes, High School Technical Training Program Toolkit, and technical partners information.

#### Video Training for Code Officials

ACCA has developed a three-part video seeks that aims to help code official better understand the three main aspects of a proper residential HVAC system design: a load calculation, selecting the appropriate equipment, and proper duct sizing. The basis for the videos are the code-referenced ACCA Manual J, Manual S, and Manual D. The video of comprise a design course, but instead provide an overview of the design process and prevent ACCA-recommended welfication points. This will better enable code officials to welft plat a splere was designed course.but instead provide an overview of the design process and prevent ACCA-recommended welfication points. This will better enable code officials to welft plat a splere was designed course.but instead provide and the design of the design process and prevent ACCA-recommended welfication points. This will better enable code officials to welft plat a splere was designed course.but instead provide and the design of the desi





#### Looking for CEUs?

ACCA is now an ICC Preferred Education Provider. Earn .02 CEUs by passing a 30 question online exam and earn your course certificate.

Click here to learn more and sign up.

#### ACCA in Building Codes

For years, ACCA's technical manuals and standards have been an integral part of the national model building codes' requirements for proper HVAC design. The following model codes currently reference, or have in the past referenced, ACCA's various design manuals and standards:

- · IAPMO's Uniform Mechanical Code
- IAPMO's Uniform Swimming Pool, Spa, and Hot Tub Code
  ICC's International Residential Code
- ICC's International Residential Code
  ICC's International Energy Conservation Code
- ICC's International Mechanical Code

To see the detailed references in each model code, including section excerpts, please see the document for the specific cycle

- 2015 Model Code References
- 2012 Model Code References
- 2009 Model Code References





× ®Convert ▼ ■S × @



Residential Plans Examiner Review Form for HVAC System Design (Loads, Equipment, Ducts) Form RPER 1.01 8 Mar 10

County, Town, Municipality, Jurisdiction Header Information

| Contractor           | REQUIRED ATTACHMENTS <sup>1</sup>                       | ATTACHED   |
|----------------------|---------------------------------------------------------|------------|
|                      | Manual J1 Form (and supporting worksheets):             | Yes No     |
| Mechanical License # | or MJ1AE Form <sup>2</sup> (and supporting worksheets): | Yes 📃 No 🗌 |
|                      | OEM performance data (heating, cooling, blower):        | Yes 📃 No 🗌 |
| Building Plan #      | Manual D Friction Rate Worksheet:                       | Yes 📃 No 🗌 |
|                      | Duct distribution system sketch:                        | Yes No     |

Home Address (Street or Lot#, Block, Subdivision)

#### HVAC LOAD CALCULATION (IRC M1401.3)

| Design Conditions                                                    |                                |                                 | Building                                                   | Constructi                     | ion Infor                                  | mation                                      |  |
|----------------------------------------------------------------------|--------------------------------|---------------------------------|------------------------------------------------------------|--------------------------------|--------------------------------------------|---------------------------------------------|--|
| Winter Design Conditions                                             |                                |                                 | Buildin                                                    | g                              |                                            |                                             |  |
| Outdoor temperature                                                  |                                | °F                              | Orientat                                                   | ion (Front doo                 | or faces)                                  |                                             |  |
| Indoor temperature                                                   |                                | °F                              | North,                                                     | East, West, South              | h, Northeast, I                            | Northwest, Southeast, Southwest             |  |
| Total heat loss                                                      |                                | Btu                             | Number                                                     | of bedrooms                    |                                            |                                             |  |
| Summer Design Condition                                              | s                              |                                 | Conditio                                                   | oned floor are                 | a                                          | Sq Ft                                       |  |
| Outdoor temperature                                                  |                                | °F                              | Number                                                     | of occupants                   |                                            |                                             |  |
| Indoor temperature                                                   |                                | °F                              | Window                                                     | vs                             |                                            | Deci _ 4                                    |  |
| Grains difference                                                    | ∆ Gr @                         | % Rh                            | Eave ov                                                    | erhang depth                   |                                            | Ft                                          |  |
| Sensible heat gain                                                   |                                | Btu                             | Internal                                                   | shade                          |                                            | Eave D                                      |  |
| Latent heat gain                                                     |                                | Blinds, drapes, et              |                                                            | drapes, etc                    | Depth Window                               |                                             |  |
| Total heat gain                                                      |                                | Btu                             | Number                                                     | r of skylights                 |                                            | Ĭ                                           |  |
| HVAC EQUIPMENT SELE                                                  | CTION (IRC                     | M140                            | 01.3)                                                      |                                |                                            |                                             |  |
| Heating Equipment Data                                               |                                | C                               | ooling Equipment Data                                      |                                |                                            | Blower Data                                 |  |
| Equipment type                                                       |                                | Equipment type                  |                                                            | <u>.</u>                       |                                            | <u>olower outu</u>                          |  |
| Furnace, Heat pump, Boller, etc.                                     |                                | -                               | Air Conditioner, Heat pump, etc                            |                                |                                            | Heating CFM CFM                             |  |
| Model                                                                |                                | _                               | Model                                                      |                                |                                            | Cooling CFM CFM                             |  |
| Heating output capacity                                              | Bt                             | u                               | Sensible cooling capacity                                  |                                | Btu                                        |                                             |  |
| Heat pumps - capacity at winter design (                             | outdoor conditions             |                                 |                                                            |                                | Btu                                        |                                             |  |
| Auxiliary heat output capacity                                       | Bt                             | u                               | Total cooling capacity                                     |                                | Btu                                        |                                             |  |
| HVAC DUCT DISTRIBUTI                                                 | ON SYSTE                       | M DE                            | SIGN (IRC M1601.1)                                         |                                |                                            |                                             |  |
| Design airflow                                                       | ign airflow CEM                |                                 | Longest supply duct: Et                                    |                                | Duct Materials Used (circle)               |                                             |  |
|                                                                      |                                | ~ .                             | -                                                          |                                | Trunk Duct: Duct board, Flex, Sheet metal, |                                             |  |
| External Static Pressure (ESP)                                       | 100                            |                                 | ongest return duct:                                        | Ft                             |                                            | Lined sheet metal, Other (specify)          |  |
| Component Pressure Losses (CPL)                                      | IW                             | VC Total Effective Length (TEL) |                                                            | Ft                             | Branch D                                   | Branch Duct: Duct board, Flex, Sheet metal, |  |
| Available Static Pressure (ASP)                                      | IW                             | С                               | Friction Rate:                                             | IWC                            | Lined sheet metal, Other (specify          |                                             |  |
| ASP = ESP - CPL                                                      |                                |                                 | Friction Rate = (ASP × 100) ÷ TEL                          |                                |                                            |                                             |  |
| I declare the load calculation, ec<br>above, I understand the claims | uipment selec<br>made on these | tion, a<br>forms                | nd duct system design were<br>will be subject to review ar | e rigorously<br>nd verificatio | performe<br>in.                            | d based on the building plan listed         |  |
| Contractor's Printed Name                                            |                                |                                 |                                                            |                                | Date                                       |                                             |  |
| Contractor's Signature                                               |                                | _                               |                                                            |                                |                                            |                                             |  |
|                                                                      |                                |                                 |                                                            |                                |                                            |                                             |  |

<sup>2</sup> If abridged version of Manual J is used for load calculation, then verify residence meets requirements, see Abridged Edition Checklist on page 13 of instructions.

ACCA Design Review Form Everything you need to check on one form.

- Load calculation
- Equipment selection
- Duct system design

# Free to download at <u>www.acca.org/codes</u>

# Free Standards





#### Free PDF Downloads on HVAC

- Quality Installation (ACCA 5 QI)
- QI Verification (ACCA 9 QIVP)
- Quality Maintenance (ACCA 4 QM)
- Quality Restoration (ACCA 6 QR)
- Whole House Evaluation (ACCA 12 QH)
- and more

Free to download at www.acca.org/quality

# Free Training for Code Officials (and Others!)



### Three-part video training on Manuals J / D / S

- Approximately 45 minutes for each segment
- A bit more detailed than this presentation
- Free! ... <u>www.ACCA.org/codes</u>

### **CEUs available from ICC**

- ACCA is an ICC Preferred Education Provider
- See: http://www.acca.org/certification/code-essentials
- 0.2 CEU; Cost for the J / D / S test = \$60

CEUs have associated costs.



## **ACCA Technical Reference Note**

*"Computing Manual J Infiltration Load Based Upon a Target Envelop Leakage Requirement"* 



Shows how to convert a maximum code allowable leakage limit (say, 3 or 5 ACH 50 per the ICC IECC) to:

- 1. Manual J infiltration CFM value, and then to
- 2. infiltration load contributions (Btuh) of:
  - sensible heating,
  - sensible cooling, and
  - latent cooling.



Free ACCA Membership for ICC Code Offices



# To obtain ACCA member benefits for free, contact:

Karla Price Higgs Vice President, Member Services International Code Council <u>KHiggs@iccsafe.org</u>



## **Educational Offerings**



#### **QI Design ...** [Load Calcs, Equipment Selection, Duct Design, etc.]



# **Offered via:**

- In-person training (3-day class)
- Online training (18 hours of videos, plus assessments)
- Offline DVDs



5-year certificates provided for successful passage of final exam

These each have associated costs.

# **Educational:** Technician Training & Certification

### **On-line learning**

- Technician Field Practices for Quality Installation
- Home Evaluation and Performance Improvement
- Friction Rate Primer and Duct Design Fundamentals
- Duct Diagnostics & Repair
- *Etc.*

Convenient ... affordable ... ondemand training focused on quality HVACR installation, maintenance, home performance, and more.









### HVAC Primer, residential





#### **Bob's House**

A case study for understanding the <u>residential</u> HVAC design process as described in the ACCA residential design manuals.

# May be purchased at

www.acca.org/store/



### HVAC Primer, commercial



#### **Technician's Guide & Workbook**



#### **Maria's Restaurant**

A case study for understanding the <u>commercial</u> HVAC design process as described in the ACCA commercial design manuals.

# May be purchased at

www.acca.org/store/











<u>Contact Information</u>: John D. Sedine, President Engineered Htg & Clg 1321 17 Mile Rd NE Cedar Springs, MI 49319 johns@engineeredhvac.com 616.439.3311



ACCA Contact:

Glenn C. Hourahan, P.E. Sr. Vice President ACCA 2800 S. Shirlington Road; Suite 300 Arlington, VA 22206 glenn.hourahan@acca.org



# www.iccsafe.org/conference #ICCAC18





# www.learn.iccsafe.org Learning Center: X33821





# Thank You For Attending



Sponsored by