SPRI’s (Amada Hickman) 2019 - Group B Proposal Concepts
For BCAC’s Review and Comment
(March 13-14, 2018 Face-to Face meeting)

IBC 15-3 – Coping

Revise language as follows:

1503.3 Coping. Parapet walls shall be properly coped with noncombustible, weatherproof materials of a width not less than the thickness of the parapet wall. Exception: Roofing system assemblies where the roof covering membrane is installed to extend and wrap over parapet walls at the perimeter that are less than 30 inches (762 mm) and down to the exterior side of the wall.

Reason:

Section 705.11.1 of the IBC for Parapet Construction, requires that parapet walls be not less than 30 inches. This proposal only applies to parapet walls at the perimeter that are less than 30 inches. This language will allow a greater variety of options for waterproofing the parapet wall. This will also provide additional options for maintaining a continuous air barrier. For example, the roof membrane could be used to wrap the top of the parapet wall and extend down the exterior side of the wall. The membrane could then be tied into the wall air barrier system.

Cost Impact:

The code change proposal will not increase or decrease the cost of construction.

No additional materials or detailing will be required based on this code change proposal; therefore it will not increase the cost of construction.
IBC 15-4 – Edge Securement

Revise language as follows:

1504.5 Edge securement for low-slope roofs. Metal edge systems, except gutters, installed on low-slope built-up, modified bitumen and single-ply roof systems, metal edge securement, except gutters, shall be designed and installed for wind loads in accordance with Chapter 16 and tested for resistance in accordance with Test Methods RE-1, RE-2 and RE-3 of ANSI/SPRI ES-1, except basic design wind speed, V, shall be determined from Figures 1609.3(1) through 1609.3(8) as applicable.

Reason:

This proposal is intended to clarify that regardless if the roof membrane is either independently or dependently terminated, the edge metal system needs to be properly tested to the appropriate standard. Metal edge systems prevent water infiltration, and in many cases to also secure the roof membrane. Loss of the edge system or components of the edge system during a high wind event could allow for water infiltration even if the roof membrane remains secure. Furthermore, any component of the edge system that becomes disengaged during a high wind event will become a projectile that can damage the roof membrane and other building components (windows, doors, walls, etc.), and possibly injure people. Therefore, metal edge systems should be tested per ES-1 whether they secure the membrane or not.

Cost Impact:

The code change proposal will not increase or decrease the cost of construction.

This proposal just clarifies that this test applies to edge metal regardless of installation method.
IBC 15-5 – Gutter Securement

Add new language as follows:

1504.5.1 Gutter securement for low-slope roofs. External gutters installed on low-slope built-up, modified bitumen, and single ply roof, shall be designed and constructed to resist wind loads as required by Chapter 16 and tested for resistance in accordance with Test Methods G-1 and G-2 of ANSI/SPRI GT-1.

Reason:

Currently the IBC requires that low-slope built-up, modified bitumen, and single-ply roof system metal edge securement be tested to resist wind and static loads, but specifically excludes gutters that are used to secure these roof systems in many cases. Studies of the aftermath of high-wind events revealed that many gutter systems did not resist the loads that occur during these high-wind events. Examples of these observations are shown below. SPRI developed the gutter test standard to address this issue. The wind resistance tests included in this standard measure the resistance of the gutter system to wind forces acting outwardly (away from the building) and to wind forces acting upwardly tending to lift the gutter off of the building. The standard also measures the resistance of the gutter system to static forces of water, snow and ice acting downward. Following are examples of gutter failures during high wind events observed during investigations conducted by the Roofing Industry Committee on Weather Issues (RICOWI).
Cost Impact:

The code change proposal will not increase or decrease the cost of construction.

A cost comparison was done between a gutter system that would and would not resist design wind loads. There was no difference in the cost of the two systems.