

Benefits of Proper Design Comfort Related Equipment Related Proper ducts installed · Better part-load humidity and Proper electrical circuit temperature control sizing Smaller temperature swings Part load operation between rooms Reduced cycling (loading / unloading) Improved humidity control Longer equipment life Less drafts and noise · Less nuisance service Improved occupant comfort / calls satisfaction **Economic Related** • Health Related Lower project costs · Reduced potential for Lower operating expenses mold growth Reduced installed load on Less contribution to the public utility system asthma and other respiratory conditions RICHM®ND

Load Calcs: Heat Gain / He	Manual J Load Des	
Summer • Heat flows INTO the home	 Winter Heat flows OUT of the home 	Two design con loads.
 Sensible heat – dry heat (dry bulb; thermometer) Latent heat – wet heat (wet bulb; 	 Sensible heat only 	Heat Gain (summer) Heat Loss (winter)
humidity) Heat Gain so we need cooling	Heat Loss so we need heating	
	Heat flow is a rate; the units are Btu/h. (Analogous to mph).	

<section-header><section-header><section-header><section-header><section-header><list-item><list-item>

Size Limits For Each Equipment Type

Size	Limits for Cool	ling-Only Equi	pment						
Equipment Type	Single Speed	Two Speed	Variable Speed See Note 8						
	Ducted or Ductless Total Cooling Capacity				Size Limits for Fossil Fuel Furnaces				
Air-Air	Max = 1.15 Max = 1.20 Max = 1. Min = 0.90 Min = 0.90 Min = 0.		Max = 1.30 Min = 0.90	Output Capacity	Single Stage	Multi Stage	Modulate Burner		
		FS	RS	for Heating-	Sizing value to	Sizing value to	Sizing value to		
Water-Air pipe loop system	Max = 1.15 Min = 0.90	Max = 1.20 Min = 0.90	Max = 1.30 Min = 0.90	only	1.4 x sizing value	1.4 x sizing value at full capacity	1.4 x sizing value at full capacity		
Water-Air open-piping system	Max = 1.25 Min = 0.90	Max = 1.30 Min = 0.90 FS	Max = 1.35 Min = 0.90 RS	Preferred ³ Output Capacity for Heating and	Sizing value to 1.4 x sizing value	Sizing value to 1.4 x sizing value at full capacity	Sizing value to 1.4 x sizing value at full capacity		
Zone Damper Systems	To minimize exercises systems shall have a capacity as posicompared to the space served.	cess air issues, zo ave as little exces sible when full-co e <i>Manual J</i> block	one damper is cooling oling capacity is load for the	Maximum ⁴ Output Capacity for Heating and Cooling	Sizing value to 2.0 x sizing value	Sizing value to 2.0 x sizing value at full capacity	Sizing value to 2.0 x sizing value at full capacity		
				Zone Damper Systems	Zone damper sys capacity as poss to the <i>Manual J</i>	stems should have ible when full capa block load for the s	e as little excess acity is compared space served.		

ICC INTERNATIONAL CODE COUNCIL®

	Size Limits for Condition A Heat Pumps				nps				Condition A Size Limits apply when:	
	Equipment Type	Single Speed	Single Two Variable Speed Speed Speed		able				 JSHR < 0.95 or HDD/CDD < 2.0 	
	Air-Air	Max = 1.15 Min = 0.90	Max = 1.20 Min = 0.90 FS	Max = 1.20 Min = 0.90 RS	Max = 1.30 Min = 0.90 RS				Moisture control is primary concern Condition B Size Limits apply when:	
	Water-Air Max = 1.15 Max = 1.20 Max = 1.20 pipe loop system Min = 0.90 Min = 0.90 Min = 0.90			JSH	Size Limits for Condition B Heat Pumps SHR = 0.95 or greater; and HDD / CDD = 2.0 or greater			 JSHR ≥ 0.95 and HDD/CDD ≥ 2.0 Heating performance is primary economy 		
	Water-Air open pipe system	Max = 1.25 Min = 0.90	Max = 1.25 Min = 0.90 FS	Max = 1.25 Min = 0.90 RS	Equipme Type	nt Single Speed	Two Speed	Variable Speed	 Realing performance is primary concern 	
	Designer must heed the Wate notes for the tables.			Air-Air Ducted o Ductless	r Max = +15,000 Max = +15,000 Max = +15,000 Max = +15,000 Min = 0.90 Min = 0.90 FS RS			JSHR = sensible cooling load / total cooling load HDD = heating degree day (base 65°F)	ł	
				Water-A pipe loo system	Max = +15,000 Min = 0.90	Max = +15,000 Min = 0.90 FS	Max = +15,000 Min = 0.90 RS	CDD = cooling degree day (base 50°F) Source for HDD and CDD is MJ8, ASHRAE, or	NOAA	
					Water-A open pip system	Max = +15,000 Min = 0.90	Max = +15,000 Min = 0.90	Max = +15,000 Min = 0.90		

Verificatio	n Points	
	Cooling Equipment	Heating Equipment
Equipment Information	TypeModel	TypeModel
Capacities satisfy design conditions	Sensible CapacityLatent CapacityTotal Capacity	Total Output CapacityAuxiliary Heating Cap.
Within load sizing limits	• To be verified	• To be verified
Blower Info (at design conditions)	CFMESP	CFMESP

FR & Cfm → Duct Size & Velocity

- Using a duct slide rule, the Cfm and calculated FR will:
 - Provide values for sizing the ducts
 - Round
 - Rectangular
 - Provide an associated velocity in feet per minute (fpm)

RICHM®ND

Velocity Limit

- Compare the velocity (feet per minute, fpm) at the design cfm with the limits for turbulence / noise control
- If the velocity exceeds the limits, then use the cfm for the limit velocity – resulting in bigger diameter ducts

Component		Supply S	ide (Fpm)	Beturn Side (Fpm)				
	Conservative		Maximum		Conservative		Maximum	
	Rigid	Flex	Rigid	Flex	Rigid	Flex	Rigid	Flex
Trunk Ducts	700	700	900	900	600	600	700	700
Branch Ducts	600	700	900	900	500	600	700	700
Supply Outlet Face Velocity	Size for Throw		700 Note 7		-		_	
Return Grille Face Velocity	-		-		_		500	
Filter Grille Face Velocity	_		_		_		300	

Manual D Min. Verification Points

ACCA recommended minimum:

- ESP from blower table at Design Airflow (CFM)
- Total Component Pressure Losses (CPL)
- Available static pressure (ASP = ESP CPL)
- Lengths: longest supply duct, longest return duct, TEL
- Determined Friction Rate
- Used Manual J room loads to determine Heating/Cooling CFMs
- · Ensure maximum airflow velocity limits are not exceeded

ACCA Technical Reference Note Free ACCA Membership ICC INTERNATIONAL CODE COUNCIL® "Computing Manual J Infiltration Load Based for ICC Code Offices Upon a Target Envelop Leakage Requirement" Shows how to convert a maximum code To obtain ACCA member benefits for free, allowable leakage limit (say, 3 or 5 ACH 50 per the ICC IECC) contact: to: Karla Price Higgs 1. Manual J infiltration CFM value, and then to Vice President, Member Services International Code Council 2. infiltration load contributions (Btuh) of: KHiggs@iccsafe.org sensible heating, · sensible cooling, and · latent cooling. RICHM®ND RICHM

