SUREAL LABORATORY PRESENTATION:

ICC – 815 Research Findings + Direction & Committee Involvement.: A Method to the Madness

University of Miami

College of Engineering

Drew Rich Esber **Andiroglu**

PhD, PE, LEED AP

A Note on our Approach...

The process we are employing to develop ICC 815 is a novel approach to standard development. Scientific Evidence & Committee input are paramount to the success of this process and will be the foundation on which this standard is built.

Project Goals

Global Product

Living Document

Adapts to Communities

Public Health

SUREAL and Safety

Wholistic in Approach

ICC 815: Wholistic Pipe Sizing Standard

A wholistic sizing approach for plumbing systems within residential occupancies.

ICC 815: Next-Gen Pipe Sizing

DREW RICH · PhD CANDIDATE

NEXT-GEN PIPE SIZING APPROACH

Creation of a pipe sizing guideline for all plumbing systems accounting for all factors deemed relevant in Phase I

DISSEMINATION AND INTEGRATION

Upon completion of pipe sizing guidelines, and incorporation into the standard, information will be spread to regulatory agencies, industry, and the workforce through a series of presentations, workshops, and papers.

PHASE I

PHASE II

PHASE III

PHASE IV

LITERATURE REVIEW

Current pipe sizing methods, background, water sources, social sciences, anything with impact on pipe sizing.

TESTING/VALIDATION & ASSOCIATED BENEFITS

Testing and validating the pipe sizing guidelines through simulations and case studies and exploring associated benefits.

Definitions & Scope

Sizing Breakdown

Simultaneous Review

Scop U Ssib

Medically Assisted Living

End User Group (EUG)

Water Supply System (WSS)

Probabilistic, Empirical, & Stochastic Demand Calculation

Residential Plumbing System

Building Water Supply Systems (BWSS)

Ideal Operating Conditions

Opportunistic Premise Plumbing Pathogens (OPPPs)

Water Demand Vs. Pipe Sizing

Definitions & Scope

Simultaneous Review

Pipe Sizing Methods

Water Scarcity

Influential Factors on Water Use

Water Quality In Plumbing Systems

Data Set Identification & Acquisition

Intermittent Water Supply Systems

Water Demand & Pipe Sizing Methods

Ideal Operating Conditions for Premise Plumbing Systems

Impact of Piping Materials on Operating Conditions & Biofilm Development

Definitions & Scope

Sizing Breakdown

Pipe Sizing Methods

Bayes Theorem

Neyman Scott Rectangular Pulse Method

Definitions & Scope

Sizing Breakdown

Pipe Sizing Methods

Legend For Development of Pipe Sizing Methodology

Committee Feedback

Upon presentation of information from research provide feedback, suggestions, publications for inclusion, relevant data, and possible new areas that may have been overlooked

Development of Pipe Sizing Methodology

Definition Phase

Understanding scope, the basic principles of the problem the reason for the problem and beginning to understand the approaches that exist.

Discovery Phase

Diving deep into literature to better understand how past research has addressed pipe sizing.

Committee

Feedback

Working Group Suggestions

Flow Properties through Different Materials

Fixtures Testing & Recommended Flow Level

Sanitary & Venting

PHASE II: Next-Gen Sizing Approach

Preliminary Standard Outline

Committee Roles and Interactions

1 Scope

2 Definitions

Peak Water Demand

4

Pipe Sizing

STANDARD

S/**N**

CODE

ASQ/ANSI/ISO 9001:2015

Quality management systems —
Requirements

This standard is an identical adoption of ISO 9001:2015

Committee Feedback

Upon presentation of information from research provide feedback, suggestions, publications for inclusion, relevant data, and possible new areas that may have been overlooked

Development of Pipe Sizing Methodology

Definition Phase

Understanding scope, the basic principles of the problem the reason for the problem and beginning to understand the approaches that exist.

Discovery Phase

Diving deep into literature to better understand how past research has addressed pipe sizing.

Focusing & Creation Phase

Elimination of variables that aren't vital to the development of the solution and beginning to fabricate a working model of said solution.

Development of Preliminary Solution for Testing and Validation

Not all aspects are completely solidified but there is a framework that can be tested and adjusted based on results.

PHASE III: Testing & Validation

Anticipated Experiments

Pressure Loss in Modern Fixtures

Affects on Varying Velocity

Temporal/Aging Impacts on Plumbing Systems

Pipe Size Effects on Biofilm/Pathogens

Pipe Sizing - Energy Impacts

Comparison with Other Methods

More Based On Committee Recommendations and Research

Committee Feedback

Upon presentation of information from research provide feedback, suggestions, publications for inclusion, relevant data, and possible new areas that may have been overlooked

Development of Pipe Sizing Methodology

Definition Phase

Understanding scope, the basic principles of the problem, the reason for the problem, and beginning to understand the approaches that exist.

Discovery Phase

Diving deep into literature to better understand how past research has addressed pipe sizing.

Focusing & Creation Phase

Elimination of variables that aren't vital to the development of the solution and beginning to fabricate a working model of said solution.

Strengthening Phase

Utilizing experiments and data to further strengthen the model or solution that was created. Adjusting weights of based on parameter significance.

Fine Tuning

Adding the final touches and adjusting the factors in preparation for final product and demonstration to stakeholders.

Cohesive Final Product

The final product will be a solution that caters to the problem in a holistic manner that has been refined through previous steps.

PHASE IV: Dissemination & Integration

Stakeholders & Methods of Dissemination

ENGINEERS/DESIGNERS

MANUFACTUERS

BUILDERS/CONTRACTORS

OPERATORS/USERS

ACADEMIA

METHODS OF DISSEMINATION

STANDARD DEVELOPMENT

Inform Regulatory Agencies
Workforce Training
Workshops / Seminars
Community Outreach

Scholarly Products
Conference Presentations
Industry Trade Shows
Codification

THANK YOU

DREW RICH · PhD CANDIDATE

Scan For Contact Information

QUESTIONS

Scan For Contact Information Drew Rich

ESBER ANDIROGLU · PHD, PE, LEED AP, · PROJECT ADVISOR

